Panora Solar Power Information & Peak Sun Hours
Solar Green Energy Summary for Panora, Iowa
Lattitude: 41.691
Sunlight
Fixed Tilt Sunlight Hours: 4.8 hours per day
1-Axis Tilt Sunlight Hours: 6.9 hours per day
2-Axis Tilt Sunlight Hours: 7.1 hours per day
If you put your solar powered math calculator in your backpack it will turn off from the lack of sunlight needed to power the device. As you slowly open your backpack and begin to let sunlight in, the calculator will eventually turn on when the amount of sunlight is enough to power the calculator. Similarly, peak sun hours refer to the hours of they day where the sunlight is strong enough to power a solar panel. This is different from total sunlight hours, which is simply the amount of hours in a day when there is any sunlight.
If you open the newspaper in the morning or watch the weather channel on the news you can get an accurate prediction of sunrise and sunset each day for Panora. However, still knowing that the latitude of Panora is 41.7 can be a helpful number for your solar panel setup and planning. The closer your latitude is to zero the closer you are to the equator. At the equator you find the most consistent total sunlight hours throughout any given day of the year. As your latitude increases you can see larger discrepancies of daily sunlight hours during the year. For example, having very long summer days and very short and dark winter days
You will notice the difference in peak sunlight hours depending on the panel type. The more flexibility the solar panel has the efficient it can be throughout the day and the year. A fixed solar panel remains in the same position at all times. A 1-axis panel follows the sun throughout the day as it moves through the sky and eventually sets. A 2-axis panel not only tracks the daily movement, but also adjusts based on the sun's changing position in the sky throughout the year as the seasons change.
Although weather predicting technology has greatly evolved over time, it is still a rather unpredictable factor that will affect the amount of peak sun hours your solar power system will receive. Cloudy days for example will usually have lower peak sun hours that a clear sunny day. And areas that usually have more average sunny days per year will probably have higher peak sun hours that areas that are often overcast or stormy.
Using the latitude of Panora along with historical data of sunlight and weather patterns we can estimate that a fixed mounted solar panel will receive an average of 4.8 hours per day in this area. That number can be increased with better technology including add a 1-axis or 2-axis tracking mount, which would increase the average peak sun hours per day to 6.9 hours and 7.1 hours, respectively.
Helpful & Interesting
What is blade efficiency?
2.2.4 Blade efficiency. The efficiency with which the transfer of energy to the moving blades occurs is essentially dependent upon the ratio of moving blade velocity and the steam absolute velocity (U/C, = £). ... Figure 1.11 shows the diagram efficiency of a reaction stage in comparison to the impulse stage.