Hubbell Solar Power Information & Peak Sun Hours
Solar Green Energy Summary for Hubbell, Nebraska
Lattitude: 40.0088
Sunlight
Fixed Tilt Sunlight Hours: 5.3 hours per day
1-Axis Tilt Sunlight Hours: 6 hours per day
2-Axis Tilt Sunlight Hours: 7.2 hours per day
Peak sun hours is one of the most important criteria to examine when considering installing a solar power system. Peak sun hours are different than total sunlight hours in a day because the strength of the radiation of the sun varies throughout the day. For example, during sunrise and sunset the solar insolation from the sun is less powerful than at noon. For a moment of sunshine to be considered a peak sun hour the intensity needs to be at least 1 kilowatt per square meter. This means that a square meter of your solar panel should be receiving 1 kilowatt of energy from the sun. This number is used because it is an amount of light that allows a solar panel to produce output efficiently and not under perform due to lack of sunlight power.
If you’re using a fixed axis and fixed tilt solar panel, the ideal angle of the panel mount should be set at an angle equal to or close to the latitude of the location of the panel. Latitude is a valuable measurement to use when figuring how many daylight hours and the angle of the sun in the sky for your location. Since at locations with a higher latitude the sun will find itself at more variable angles in the sky throughout the year it is important to set the angle of the panel correctly and efficiently capture more peak sun hours. In the Northern Hemisphere the sun will be at lower angles in the Southern sky in the winter, and higher angles during the summer months, so the angle of the panel is crucial when trying to maximize output.
There are a few ways to increase average peak sun hours per year for your solar power system. One way is to use a tracking mount solar panel instead of a fixed tilt solar panel. A 1-axis mount will track the sun throughout the sky from sunrise to sunset, giving your panel a more efficient facing direction towards the sun throughout the day. A 2-axis solar panel will track the sun in the sky throughout the day, but also change and follow the angle of the sun in the sky throughout the year. Both of these axis system solar panels will produce higher average peak sun hours than a fixed solar panel.
Weather is one of the major culprits that will cause inconsistent total peak sun hours for any given day. The sunrise and sunset will always be predictable every day, but the weather is hard to predict and cloud coverage can greatly diminish the efficiency of a solar power system on any given day. On the bright side, a location that is known to have cloudy weather a majority of the year could have unexpectedly more sunny days, so it can go both ways.
In Hubbell you can look at the average peak sun hours of a fixed solar panel mount, which will be 5.3 hours. This number iis an estimate based on data of previous years. With a tracking mount in Hubbell you could theoretically increase the amount of peak sun hours per with a 1-axis mount, and get 6 hours, or a 2-axis mount and potentially increase your average to 7.2 hours.