Duncan Solar Power Information & Peak Sun Hours
Solar Green Energy Summary for Duncan, South Carolina
Lattitude: 34.9372
Sunlight
Fixed Tilt Sunlight Hours: 5 hours per day
1-Axis Tilt Sunlight Hours: 6.4 hours per day
2-Axis Tilt Sunlight Hours: 6.6 hours per day
Peak sun hours is arguably the most important number to consider before installing your solar panels. Unlike total sun hours, peak sun hours are calculated by looking at the amount of sunlight hours in a 24 hour period that is strong enough to be absorb by a solar panel. One way to imagine peak sun hours is to think about a solar powered calculator you owned in school. If you covered the solar panel with your finger, or tried to use the calculator in the dark, the calculator would not work. As you slowly exposed the calculator to light the calculator would eventually turn on and be usable. The same is true with peak sun hours; these are the hours that your solar panels receive enough sunlight to work. Looking at the average peak sunlight hours of 5 per day can help you determine the amount of solar panels you need to install to power your home or business in Duncan, South Carolina.
The latitude at the equator of the earth is zero degrees. This is where sunlight strikes the earth most directly. Due to the earth's curved shape, sunlight hits at a various angles depending on location. As latitude increases, the further you are located from the equator and more variance you see in sunlight hours. The latitude of Duncan is 34.9.
There are a few ways to increase average peak sun hours per year for your solar power system. One way is to use a tracking mount solar panel instead of a fixed tilt solar panel. A 1-axis mount will track the sun throughout the sky from sunrise to sunset, giving your panel a more efficient facing direction towards the sun throughout the day. A 2-axis solar panel will track the sun in the sky throughout the day, but also change and follow the angle of the sun in the sky throughout the year. Both of these axis system solar panels will produce higher average peak sun hours than a fixed solar panel.
Looking at latitude, average peak sun hours and various data can obviously help when planning for your solar power needs. The one thing you can never fully account for is changing weather. Storms, rain, cloud coverage all have an impact on solar panel capabilities.
Using the latitude of Duncan along with historical data of sunlight and weather patterns we can estimate that a fixed mounted solar panel will receive an average of 5 hours per day in this area. That number can be increased with better technology including add a 1-axis or 2-axis tracking mount, which would increase the average peak sun hours per day to 6.4 hours and 6.6 hours, respectively.