Glendale Solar Power Information & Peak Sun Hours
Solar Green Energy Summary for Glendale, Washington
Lattitude: 47.9395
Sunlight
Fixed Tilt Sunlight Hours: 3.4 hours per day
1-Axis Tilt Sunlight Hours: 4.2 hours per day
2-Axis Tilt Sunlight Hours: 4.4 hours per day
The average amount of peak sun hours in a day is a different and more useful number as it relates to solar panels than total sun hours. Total sun hours are exactly what you would expect; the total amount of hours that the sun is out during a 24 hour period. Peak sun hours, on the other hand, are the total number of hours in a day where the sunshine is strong enough to to be absorbed and used by solar panels. Sunlight early in the morning or late at night is often not strong enough to count toward peak sun hours. Because of this, total sun hours will always be more than peak sun hours. Looking at the average peak sun hours in Glendale throughout the year can help you better estimate the amount of solar panels you will need to power your business or home.
If you’re using a fixed axis and fixed tilt solar panel, the ideal angle of the panel mount should be set at an angle equal to or close to the latitude of the location of the panel. Latitude is a valuable measurement to use when figuring how many daylight hours and the angle of the sun in the sky for your location. Since at locations with a higher latitude the sun will find itself at more variable angles in the sky throughout the year it is important to set the angle of the panel correctly and efficiently capture more peak sun hours. In the Northern Hemisphere the sun will be at lower angles in the Southern sky in the winter, and higher angles during the summer months, so the angle of the panel is crucial when trying to maximize output.
There are a few ways to increase average peak sun hours per year for your solar power system. One way is to use a tracking mount solar panel instead of a fixed tilt solar panel. A 1-axis mount will track the sun throughout the sky from sunrise to sunset, giving your panel a more efficient facing direction towards the sun throughout the day. A 2-axis solar panel will track the sun in the sky throughout the day, but also change and follow the angle of the sun in the sky throughout the year. Both of these axis system solar panels will produce higher average peak sun hours than a fixed solar panel.
Weather is one of the major culprits that will cause inconsistent total peak sun hours for any given day. The sunrise and sunset will always be predictable every day, but the weather is hard to predict and cloud coverage can greatly diminish the efficiency of a solar power system on any given day. On the bright side, a location that is known to have cloudy weather a majority of the year could have unexpectedly more sunny days, so it can go both ways.
Using the latitude of Glendale along with historical data of sunlight and weather patterns we can estimate that a fixed mounted solar panel will receive an average of 3.4 hours per day in this area. That number can be increased with better technology including add a 1-axis or 2-axis tracking mount, which would increase the average peak sun hours per day to 4.2 hours and 4.4 hours, respectively.