Mountain Home Solar Power Information & Peak Sun Hours
Solar Green Energy Summary for Mountain Home, Idaho
Lattitude: 43.1328
Sunlight
Fixed Tilt Sunlight Hours: 5.5 hours per day
1-Axis Tilt Sunlight Hours: 6.4 hours per day
2-Axis Tilt Sunlight Hours: 7.4 hours per day
The average peak sun hours of Mountain Home is a crucial measurable component needed to efficiently implement a solar power system in a home or business. Put simply, peak sun hours are the hours of sunlight a day that are strong enough to be efficiently absorbed by solar panels and eventually turned into usable electricity. Not every minute of sunlight during a day is strong enough to be useful to a solar power system. Think about just minutes after the sunrises, which officially counts towards total hours of sunlight, but is usually too weak to be counted in peak sun hours because the strength of the solar insolation is not strong enough near the horizon to be absorbed and turned into electricity at an efficient rate. Times during the day like this, where the sun is out but not strong enough, are not counted as peak sun hours. In other words, the amount of peak sun hours in a location will theoretically always be less than total sunlight hours for a given day.
The latitude of the location is important for measuring peak sun hours. The latitude determines how much overall sunlight there will be in a day. With a given latitude, time and date, one can accurately determine when sunrise and sunset will occur. Areas with latitudes closer to the equator will have a more consistent range of solar insolation throughout the year. Whereas areas closer to the poles will have a greater variance during the summer and winter months due to their higher latitudes.
There are a few ways to increase average peak sun hours per year for your solar power system. One way is to use a tracking mount solar panel instead of a fixed tilt solar panel. A 1-axis mount will track the sun throughout the sky from sunrise to sunset, giving your panel a more efficient facing direction towards the sun throughout the day. A 2-axis solar panel will track the sun in the sky throughout the day, but also change and follow the angle of the sun in the sky throughout the year. Both of these axis system solar panels will produce higher average peak sun hours than a fixed solar panel.
Climate in your geographical region is a major factor that will influence average peak sun hours per year. If you live in a region that does not have a lot of completely sunny days, then cloud coverage will greatly influence solar insolation on any given day. Mountains and trees may also contribute to lower solar insolation if they block the sun from your panels at any given point of the day.
In Mountain Home you can look at the average peak sun hours of a fixed solar panel mount, which will be 5.5 hours. This number iis an estimate based on data of previous years. With a tracking mount in Mountain Home you could theoretically increase the amount of peak sun hours per with a 1-axis mount, and get 6.4 hours, or a 2-axis mount and potentially increase your average to 7.4 hours.