Rome Solar Power Information & Peak Sun Hours

Solar Green Energy Summary for Rome, Iowa

Lattitude: 40.9822

Sunlight

Fixed Tilt Sunlight Hours: 4.8 hours per day

1-Axis Tilt Sunlight Hours: 6.8 hours per day

2-Axis Tilt Sunlight Hours: 7 hours per day

Peak sun hours is arguably the most important number to consider before installing your solar panels. Unlike total sun hours, peak sun hours are calculated by looking at the amount of sunlight hours in a 24 hour period that is strong enough to be absorb by a solar panel. One way to imagine peak sun hours is to think about a solar powered calculator you owned in school. If you covered the solar panel with your finger, or tried to use the calculator in the dark, the calculator would not work. As you slowly exposed the calculator to light the calculator would eventually turn on and be usable. The same is true with peak sun hours; these are the hours that your solar panels receive enough sunlight to work. Looking at the average peak sunlight hours of 4.8 per day can help you determine the amount of solar panels you need to install to power your home or business in Rome, Iowa.

If you open the newspaper in the morning or watch the weather channel on the news you can get an accurate prediction of sunrise and sunset each day for Rome. However, still knowing that the latitude of Rome is 41.0 can be a helpful number for your solar panel setup and planning. The closer your latitude is to zero the closer you are to the equator. At the equator you find the most consistent total sunlight hours throughout any given day of the year. As your latitude increases you can see larger discrepancies of daily sunlight hours during the year. For example, having very long summer days and very short and dark winter days

Although most things are out of our control, like the sunrise, sunset or the weather, we can control the angle and the kind of mount we use for a solar panel. The angle of the solar panel, if using a fixed mount, should generally be around the angle that is equal to the latitude of the location to maximize output. In the northern hemisphere, panels angles should be lower in the winter months and higher in the summer months As a fixed mount is set, it is ideal to place it at an angle that will capture the most sunlight during the year. A 1-axis tracking solar mount will track the sun across the sky from sunrise to sunset, but the angle will remain the same throughout the day. A 2-axis solar mount will track the sun throughout the day from East to West, but the angle will also change automatically as the seasons change and the angle of the sun in the sky changes. Thus, a 2-axis will have a higher rating of peak sun hours compared to the 1-axis or fixed.

Another reason to consider average peak sun hours is because weather can dramatically affect the day-to-day output of solar panels. It goes without saying that a dark stormy day will produce less output than a clear sunny day. Looking at a yearly average helps account for these daily variables.

We can use previous years of data to estimate the amount of peak sun hours in Rome. A fixed tilt mount for example will receive 4.8 average hours per day. For more efficiency for your system in Rome you could use a 1-axis tracking mount and increase your daily peak sun average to 6.8 hours, or even further with a 2-axis panel to get an average of 7 hours.


Solar Businesses in Rome, Iowa




Leave a Reply

Your email address will not be published. Required fields are marked *