Rosine Solar Power Information & Peak Sun Hours
Solar Green Energy Summary for Rosine, Kentucky
Lattitude: 37.4523
Sunlight
Fixed Tilt Sunlight Hours: 4.5 hours per day
1-Axis Tilt Sunlight Hours: 5.5 hours per day
2-Axis Tilt Sunlight Hours: 5.7 hours per day
When trying to calculate your solar power needs there are a variety of factors to consider. Panel type and location, electricity needs, number of panels needed etc. One key to figuring out the math is factoring in the average peak sunlight hours in a day. Unlike total sunlight hours, peak sunlight hours are only when the sun is strong enough to power your solar panel. Using this number can help determine your needs to power your home or business in Rosine, Kentucky.
Sunlight hits the earth directly at the equator. This is why the equator has a latitude of zero degrees. The latitude of Rosine is 37.5. Knowing the latitude of Rosine can help you plan for your solar panel setup, as the larger the latitude the more variance you will see throughout the year for total daily sunlight hours.
A tracking mount will increase the average peak sun hours for a solar power system. Think about a panel that is tracking the sun in the sky vs a panel that is fixed and not moving: you will see a higher efficiency ratio of productions. A 1-axis mount will track the sun from East to West from sunrise to sunset and move on a single axis of rotation. A 2-axis mount will track the Sun from East to West the same as a 1-axis mount would, but it will also track the angle of the sun in the sky as it slowly varies season to season. A 2-axis mount is more necessary in high latitude regions where the angle of the sun in the sky changes dramatically between each equinox.
Peak sun hours are greatly affected by weather patterns. Cloud coverage is a huge factor in peak sun hours per day because heavy cloud coverage will diminish the power of the solar insolation. You can use historical climate data to estimate average cloud and weather coverage, but it will obviously vary slightly from year to year.
Using the latitude of Rosine along with historical data of sunlight and weather patterns we can estimate that a fixed mounted solar panel will receive an average of 4.5 hours per day in this area. That number can be increased with better technology including add a 1-axis or 2-axis tracking mount, which would increase the average peak sun hours per day to 5.5 hours and 5.7 hours, respectively.