Ginger Blue Solar Power Information & Peak Sun Hours
Solar Green Energy Summary for Ginger Blue, Missouri
Lattitude: 36.5899
Sunlight
Fixed Tilt Sunlight Hours: 4.7 hours per day
1-Axis Tilt Sunlight Hours: 6 hours per day
2-Axis Tilt Sunlight Hours: 6.5 hours per day
If you put your solar powered math calculator in your backpack it will turn off from the lack of sunlight needed to power the device. As you slowly open your backpack and begin to let sunlight in, the calculator will eventually turn on when the amount of sunlight is enough to power the calculator. Similarly, peak sun hours refer to the hours of they day where the sunlight is strong enough to power a solar panel. This is different from total sunlight hours, which is simply the amount of hours in a day when there is any sunlight.
If you’re using a fixed axis and fixed tilt solar panel, the ideal angle of the panel mount should be set at an angle equal to or close to the latitude of the location of the panel. Latitude is a valuable measurement to use when figuring how many daylight hours and the angle of the sun in the sky for your location. Since at locations with a higher latitude the sun will find itself at more variable angles in the sky throughout the year it is important to set the angle of the panel correctly and efficiently capture more peak sun hours. In the Northern Hemisphere the sun will be at lower angles in the Southern sky in the winter, and higher angles during the summer months, so the angle of the panel is crucial when trying to maximize output.
A tracking mount will increase the average peak sun hours for a solar power system. Think about a panel that is tracking the sun in the sky vs a panel that is fixed and not moving: you will see a higher efficiency ratio of productions. A 1-axis mount will track the sun from East to West from sunrise to sunset and move on a single axis of rotation. A 2-axis mount will track the Sun from East to West the same as a 1-axis mount would, but it will also track the angle of the sun in the sky as it slowly varies season to season. A 2-axis mount is more necessary in high latitude regions where the angle of the sun in the sky changes dramatically between each equinox.
Although weather predicting technology has greatly evolved over time, it is still a rather unpredictable factor that will affect the amount of peak sun hours your solar power system will receive. Cloudy days for example will usually have lower peak sun hours that a clear sunny day. And areas that usually have more average sunny days per year will probably have higher peak sun hours that areas that are often overcast or stormy.
For a fixed mounted solar panel in Ginger Blue, meaning that the solar panel will not track the sun in the sky, once can expect about 4.7 average peak sun hours per day. A 1-axis mount would increase this number to 6 hours per day because the panel would be facing the sun throughout the day. A 2-axis system that tracks the sun in the sky every day of the year would get approximately 6.5 hours per day in Ginger Blue.