McFall Solar Power Information & Peak Sun Hours
Solar Green Energy Summary for McFall, Missouri
Lattitude: 40.1116
Sunlight
Fixed Tilt Sunlight Hours: 5.2 hours per day
1-Axis Tilt Sunlight Hours: 6.4 hours per day
2-Axis Tilt Sunlight Hours: 6.7 hours per day
The average peak sun hours of McFall is a crucial measurable component needed to efficiently implement a solar power system in a home or business. Put simply, peak sun hours are the hours of sunlight a day that are strong enough to be efficiently absorbed by solar panels and eventually turned into usable electricity. Not every minute of sunlight during a day is strong enough to be useful to a solar power system. Think about just minutes after the sunrises, which officially counts towards total hours of sunlight, but is usually too weak to be counted in peak sun hours because the strength of the solar insolation is not strong enough near the horizon to be absorbed and turned into electricity at an efficient rate. Times during the day like this, where the sun is out but not strong enough, are not counted as peak sun hours. In other words, the amount of peak sun hours in a location will theoretically always be less than total sunlight hours for a given day.
The equator has a latitude of zero while McFall has a latitude of 40.1. Any city located on the equator will receive the most sunlight throughout the year because the sunlight arrives at a perpendicular 90 degree angle to the earth at the equator. The further you are from the equator the more your daily sunlight hours can vary.
A tracking mount will increase the average peak sun hours for a solar power system. Think about a panel that is tracking the sun in the sky vs a panel that is fixed and not moving: you will see a higher efficiency ratio of productions. A 1-axis mount will track the sun from East to West from sunrise to sunset and move on a single axis of rotation. A 2-axis mount will track the Sun from East to West the same as a 1-axis mount would, but it will also track the angle of the sun in the sky as it slowly varies season to season. A 2-axis mount is more necessary in high latitude regions where the angle of the sun in the sky changes dramatically between each equinox.
Weather is a big determinate of average peak sun hours each day. There are many aspects of weather that can increase or lessen the peak sun hours in a day in a particular location. For example cloud coverage is a crucial variable. And more importantly, what type of cloud coverage; thin scattered clouds will have less diminishing power on the solar insolation than thick rainy storm clouds. Sometimes long periods of sunny days are rare in certain locations, this would increase average peak sun hours for that time-frame
We can take the latitude of McFall and use that number to know the amount of total sunlight hours in the region from sunlight to sunset and estimate that with a fixed solar panel, McFall will receive 5.2 average peak sun hours per day. This number can be increased to 6.4 hours by using a 1-axis tracking mount, or 6.7 hours from a 2-axis tracking mount.