Timber Solar Power Information & Peak Sun Hours
Solar Green Energy Summary for Timber, Oregon
Lattitude: 45.7198
Sunlight
Fixed Tilt Sunlight Hours: 4.7 hours per day
1-Axis Tilt Sunlight Hours: 6.3 hours per day
2-Axis Tilt Sunlight Hours: 6.5 hours per day
The average peak sun hours of Timber is a crucial measurable component needed to efficiently implement a solar power system in a home or business. Put simply, peak sun hours are the hours of sunlight a day that are strong enough to be efficiently absorbed by solar panels and eventually turned into usable electricity. Not every minute of sunlight during a day is strong enough to be useful to a solar power system. Think about just minutes after the sunrises, which officially counts towards total hours of sunlight, but is usually too weak to be counted in peak sun hours because the strength of the solar insolation is not strong enough near the horizon to be absorbed and turned into electricity at an efficient rate. Times during the day like this, where the sun is out but not strong enough, are not counted as peak sun hours. In other words, the amount of peak sun hours in a location will theoretically always be less than total sunlight hours for a given day.
Although you can easily predict sunrise and sunset hours each day to the minute, looking at latitude can help with your solar planning. The closer you get to the equator the closer your latitude gets to zero. Sunlight hours on the equator are consistent throughout the entire year. Places further from the equator can have large variance in daily sunlight. For example higher latitudes can have very long summer days with lots of sunlight and very dark winters. The latitude of Timber is 45.7.
Although most things are out of our control, like the sunrise, sunset or the weather, we can control the angle and the kind of mount we use for a solar panel. The angle of the solar panel, if using a fixed mount, should generally be around the angle that is equal to the latitude of the location to maximize output. In the northern hemisphere, panels angles should be lower in the winter months and higher in the summer months As a fixed mount is set, it is ideal to place it at an angle that will capture the most sunlight during the year. A 1-axis tracking solar mount will track the sun across the sky from sunrise to sunset, but the angle will remain the same throughout the day. A 2-axis solar mount will track the sun throughout the day from East to West, but the angle will also change automatically as the seasons change and the angle of the sun in the sky changes. Thus, a 2-axis will have a higher rating of peak sun hours compared to the 1-axis or fixed.
There are more variables than latitude that can change average peak sun hours. Weather patterns and geography will influence solar insolation that reaches your system. Thick grey storm clouds for example will block out a lot of the sun to the point where there may be no peak sun hours in the middle of the day when the sun is usually very powerful. Trees and mountains can deflect the sunlight, so be sure your solar panel is selectively placed.
In Timber you can look at the average peak sun hours of a fixed solar panel mount, which will be 4.7 hours. This number iis an estimate based on data of previous years. With a tracking mount in Timber you could theoretically increase the amount of peak sun hours per with a 1-axis mount, and get 6.3 hours, or a 2-axis mount and potentially increase your average to 6.5 hours.