Falling Spring Solar Power Information & Peak Sun Hours
Solar Green Energy Summary for Falling Spring, West Virginia
Lattitude: 37.9926
Sunlight
Fixed Tilt Sunlight Hours: 4.7 hours per day
1-Axis Tilt Sunlight Hours: 5.1 hours per day
2-Axis Tilt Sunlight Hours: 5.9 hours per day
Peak sun hours is one of the most important criteria to examine when considering installing a solar power system. Peak sun hours are different than total sunlight hours in a day because the strength of the radiation of the sun varies throughout the day. For example, during sunrise and sunset the solar insolation from the sun is less powerful than at noon. For a moment of sunshine to be considered a peak sun hour the intensity needs to be at least 1 kilowatt per square meter. This means that a square meter of your solar panel should be receiving 1 kilowatt of energy from the sun. This number is used because it is an amount of light that allows a solar panel to produce output efficiently and not under perform due to lack of sunlight power.
If you open the newspaper in the morning or watch the weather channel on the news you can get an accurate prediction of sunrise and sunset each day for Falling Spring. However, still knowing that the latitude of Falling Spring is 38.0 can be a helpful number for your solar panel setup and planning. The closer your latitude is to zero the closer you are to the equator. At the equator you find the most consistent total sunlight hours throughout any given day of the year. As your latitude increases you can see larger discrepancies of daily sunlight hours during the year. For example, having very long summer days and very short and dark winter days
They type of solar panel you use has an affect on the average peak sunlight hours. Some panels allow for movement, so they can track the sun as it rises in the east and sets in the west, or as the seasons change and the sun's path changes. A fixed panel remains fixed and does not have the ability to rotate, whereas a 1-axis and 2-axis panel can adjust with the sun.
The sunrise and sunset is very predictable every day, but things like cloud coverage and weather are less predictable and vary daily and annually. If a location that is usually very sunny experiences a huge increase in storms and cloud coverage in a given year than the average peak sun hours for that day or year will probably decrease. Tall objects such as trees and buildings can block out the sun during high solar insolation times, so be sure to strategically place your solar panels to get better efficiency.
Using the latitude of Falling Spring along with historical data of sunlight and weather patterns we can estimate that a fixed mounted solar panel will receive an average of 4.7 hours per day in this area. That number can be increased with better technology including add a 1-axis or 2-axis tracking mount, which would increase the average peak sun hours per day to 5.1 hours and 5.9 hours, respectively.